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We calculate time correlation functions in the Bak-Sneppen model@Phys. Rev. Lett.71, 4083 ~1993!#, a
model showing self-organized criticality. For a random neighbor version of the model, analytical results are
presented, while on a one-dimensional lattice we give numerical results. The power spectrum of these corre-
lation functions shows 1/f behavior in both cases.@S1063-651X~96!08205-0#

PACS number~s!: 5.40.1j, 64.60.Ak, 87.10.1e

A large diversity of physical systems show 1/f noise@1#.
The power spectra of time correlation functions of such sys-
tems show power law behaviorf2b over many orders of
magnitude with an exponentb in the range 0.6–1.6. A pos-
sible explanation for the wide occurrence of this phenom-
enon was put forward in a paper entitled ‘‘Self-organized
criticality: An explanation of 1/f noise’’ @2#. In that paper,
Bak, Tang, and Wiesenfeld@2# argue that many open nonlin-
ear dynamical systems with a large number of degrees of
freedom evolve to a state where they show critical behavior
characterized by power law correlations both in space and
time. Bak, Tang, and Wiesenfeld~BTW! illustrate their ideas
using a simple model, the so-called sandpile model@3#.
While this model shows many interesting properties, detailed
investigations@4,5# showed that its power spectrum has
f22 behavior in any finite dimension. A mean-field calcula-
tion of the model did, however, show the expected 1/f be-
havior exactly@6#.

Following the work of BTW a great variety of models
~deterministic and stochastic, conservative and dissipative,
etc.! have been introduced which show the phenomenon of
self-organized criticality~SOC!. A common feature of these
models is the presence of a separation of time scales; the
system is driven at a very slow rate until one of its elements
reaches a threshold. This triggers a burst of activity~ava-
lanche! which occurs on a very short time scale. When the
avalanche is over, the system evolves again according to the
slow drive until a next avalanche is triggered, and so on. The
activity of the system in this way consists of a series of
independent avalanches. A generic signature of SOC is the
presence of a power law in the size~or duration! distribution
of the avalanches. If one increases the external driving rate
of the system this power law disappears. It was, however,
shown by Hwa and Kardar@7# that if one increases the rate at
which sand is dropped in the sandpile model, and one thus
obtains the possibility of interacting avalanches, there ap-
pears a region in the power spectrum where the behavior is
1/f .

The BTW-sandpile model is a stochastic and conservative
model. Olami, Feder, and Christensen~OFC! @8# introduced
a deterministic and dissipative model, related to spring-block
models of earthquakes, which shows signatures of SOC,
such as the occurrence of power law distributions for the
sizes of the avalanches, with an exponent which depends on
the degree of nonconservation in the model. In a subsequent

study@9# it was shown that this model shows 1/f noise with
an exponentb which also depends on the degree of non-
conservation in the model. In a sense then, the OFC model
fulfills, more than the sandpile model, the original require-
ments of the concept of SOC.

In the present paper we study the question of 1/f noise in
the Bak-Sneppen model~BS! @10#. This model was intro-
duced to describe the coevolution of species in the earth’s
ecology. Indeed the model shows many qualitative similari-
ties with data from the real world, but fails on a quantitative
level ~see, e.g.,@11#!. In this paper we are only interested in
the BS model as an interesting physical model and do not
discuss its possible biological relevance. The occurrence of
1/f noise in the Bak-Sneppen model was already investigated
numerically in@12#. Here we will introduce a somewhat dif-
ferent time correlation function, which has the advantage that
it can be calculated exactly, at least in a mean-field theory.

In the BS model one has a system ofN interacting spe-
cies, each of which is represented by a real variablexi
P@0,1# ( i : 1, . . . ,N) which is a measure of the fitness of the
species. Initially, allxi are given a random value, taken from
a uniform distribution on@0,1#. The dynamics of the model
is defined as follows. First one looks for the sitej where the
fitness takes its lowest value. One then assigns a new random
variable ~taken again from the uniform distribution! xj to
speciesj . At the same time, the fitness ofK other species is
changed randomly. Several versions of the BS model can be
defined, depending on the way in which these other species
are chosen. In the lattice version of the model, the species are
arranged on a lattice and theK species are taken as nearest
neighbors. A random neighbor version, in which theK
neighbors are chosen at random at each time step, was intro-
duced in@13#. This version of the model has the advantage
that several of its properties can be calculated exactly@14#.
In this paper we will study both this random neighbor ver-
sion ~with K51) and a one-dimensional version of the
model in which we only modify the fitness of the neighbor to
the right of the species with lowest fitness.

Analytical calculations and extensive simulations have
shown that the BS model evolves to a state in which the
probability distributionp(x) that a species has a fitnessx
becomes a step function, which is zero forx less than some
threshold valuexc,1, and which is 1/(12xc) for x.xc . In
the random neighbor model it is known thatxc51/(K11)
exactly. The exact value ofxc is not known for any lattice
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version of the model, but precise numerical estimates exist,
especially ind51, for the case in which both neighbors are
updated@15,16#. For the case of the one-dimensional model
in which one neighbor is updated, we know of no estimate
for xc in the literature. From our numerical results, we esti-
matexc50.71060.005 for this case~details of our numerical
work are described below!.

Once the system has reached the equilibrium state, its
dynamics is characterized by periods~identified with ava-
lanches! in which at least one of the species has a fitness less
than xc , separated by periods in which all species have a
fitness above threshold. The avalanches can be characterized
either by their duration or by their total activity. Let us de-
note byn(t) the number of species which are below thresh-
old as a function of~discrete! time t. The total activitys of
an avalanche lasting fromt5t2 to t5t1 ~so its total dura-
tion is T5t12t211) is then given by

s5 (
t5t2

t1

n~ t !. ~1!

The distributionsP(T) of avalanche durations andP(s) of
avalanche sizes follow a power law

P~T!;T2t, P~s!;s2y. ~2!

For the random neighbor model, it is known exactly that
t53/2 @14# while for the one-dimensional model~two neigh-
bor updating! the most accurate numerical estimate is
t51.07360.003 @15#. Our simulations of the one-
dimensional one neighbor model lead to the estimate
t51.0860.01, giving strong evidence that, as could be ex-
pected, both one-dimensional models are in the same univer-
sality class. We do not know of any existing estimates of the
exponenty for the BS model.

It is of importance to remark that in the BS model as
described so far there is no explicit time separation between
a fast time scale for avalanches and a slow time scale for
interavalanche periods. Such a separation is, however,im-
plicitly present in the definition of the model since one as-
sumes that one time step in the model is related to a step in
‘‘geological’’ time tg5exp(xmin /T̃) ~wherexmin is the lowest
value of x at a given time andT is a measure of mutation
rate, see, e.g.,@11#!. When 1/T̃@1, avalanches occur on time
scales which are short compared to the time scale of the
external drive which is set by the mutation rate. In this paper
we will not further discuss the properties of the BS model on
this geological time scale, since for that case no analytical
results can be obtained and we want to concentrate on the
properties of the BS model as a model in physics. If one
wants to make a comparison with real world data, as is done,
e.g., in@11#, use of the time scaletg is necessary.

In order to study spectral properties of the BS model it is
necessary to introduce a dynamical correlation function
GN(t). In @12# one uses the probability that a site which is
active~i.e., has the lowest value ofx) at time 0 will be active
again at timet. In our calculations we use the autocorrelation
of the total number of sites below threshold,

GN~ t !5^n~ t0!n~ t01t !& t02^n~ t0!& t0
2 , ~3!

where the average is taken over timet0 in the equilibrium
state. The quantityn(t) has the advantage that its time evo-
lution can be rather easily studied in the random neighbor
version of the BS model, as we discuss below. A rather simi-
lar quantity was also introduced in Flyvbjerg’s ‘‘pinball’’
approximation to the sandpile model@17#. If one compares
with an equilibrium model, such as the Ising model, at criti-
cality, our approach is like studying the autocorrelation func-
tion of the magnetization whereas the activity studied in@12#
corresponds to measuring the probability that a spin that is
flipped at timet50 will be flipped again at timet.

According to the dynamical scaling hypothesis@18# one
expects the Fourier transformĜN(v) of a correlation func-
tion such as~3! to scale as

ĜN~v!5v2sH~vNz!, ~4!

whereH is a scaling function andz the dynamical exponent.
Or equivalently, in real space

GN~ t !5Nz~s21!H̃~ t/Nz!. ~5!

We have calculatedGN(t) analytically for the random neigh-
bor version (K51) of the BS model and numerically for the
one-dimensional one neighbor version of the model. In both
cases we find the presence of 1/f noise. We now turn to the
details of these calculations, and we start with the analytical
results.

In @14# a master equation approach to the random neigh-
bor model was introduced. LetPn(t) be the probability that
at time t, n species have a fitness which is below a certain
value l. In the end we will be most interested in the case
whenl5xc but for the moment we look at the more general
case. It is then rather easy to write down a master equation
for Pn(t),

Pn~ t11!5 (
m50

N

MnmPm~ t !, ~6!

where the matrix elementsMnm can be written down in
terms ofl andN @14#. For t→`,Pn(t) evolves to an equi-
librium distributionPn* . The correlation functionGN(t) can
also be written down in terms of the matrixM . One has

GN~ t !5 lim
t0→`

(
m50

N

(
k50

N

mkPm~ t0!@M
tP~ t0!#k

2F lim
t0→`

(
m50

N

mPm~ t0!G 2. ~7!

This expression in fact allows a~numerically! exact calcula-
tion of GN(t) in finite systems by simple iteration of the
master equation~6!. We have performed such calculations
for l5xc for systems withN up to 4000 and timest up to
2N ~results are discussed below!.

More interesting is the scaling limit in whichN→` and
l→xc . In that limit it is possible to get a closed expression
for the dynamic correlation function. It is therefore conve-
nient to rewrite~7! as
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GN~ t !5 (
m50

N

(
k50

N

mkPm*Qmk~ t !2F (
m50

N

mPm* G2, ~8!

whereQmk(t) is the probability that int time steps the num-
ber of species with fitness belowl changes fromm to k. The
authors of@14# assume that in the scaling limitPn* becomes
a scaling functionf of the variablen/AN,

Pn*5
1

AN
f S n

AND . ~9!

Inserting ~9! into ~6! and takingt→`, N→`, andl→xc
then gives a differential equation from whichf can be cal-
culated@see Eq.~21! of @14# #. Using this result we immedi-
ately get the second term on the right-hand side of~8!,

S (
m50

N

mPm* D 25 N

2p
. ~10!

What remains is a calculation ofQmk(t) in the scaling limit.
We therefore assume that this probability scales as

Qmk~ t !5
1

AN
gS m

AN
,
k

AN
,
t

ND . ~11!

If we insert this assumption in~6! and take the scaling limit,
we obtain a differential equation for g ~with
x5k/AN,y5m/AN, andt5t/N);

]g

]t
5g1x

]g

]x
1
1

4

]2g

]x2
, ~12!

which has to solved with the initial condition

g~x,y,t50!5d~x2y! ~13!

and reflecting boundary conditions inx50.
The solution is

g~x,y,t!5h~x,y,t!1h~x,2y,t!, ~14!

where

h~x,y,t!5A2

pS 1

12exp~22t! D
1/2

exp~2y2!

3expH 2
2

12exp~22t!
@y2

1x222xyexp~2t!#J . ~15!

This result has to be used, together with~11!, in the first term
on the right-hand side of~8!. Taking the scaling limit and
using the expression ofPm* from @14# we can rewrite this
term as

N
2A2
Ap

F E
0

`

dxE
0

`

dyxyexp~22y2!g~x,y,t!G .
Inserting our result forg(x,y,t) and performing the integra-
tion then finally gives

GN~ t !5NH 1

8p
@12exp~22t!#3/2@F„1,2,3/2,r2~t!…

1F„1,2,3/2,r1~t!…2F„1,2,5/2,r2~t!…/3

2F„1,2,5/2,r1~t!…/3#2
1

2p J , ~16!

whereF(a,b,c,z) is the hypergeometric function and where

r6~t!5 1
2 @16exp~2t!#.

We thus see that the correlation function has indeed the scal-
ing form ~5! with z51 ands52. In Fig. 1 we show our
result~16! for GN(t)/N versust, together with the numerical
results obtained from direct computation of~8! in finite sys-

FIG. 1. The exact correlation function of the
random neighbor Bak-Sneppen model. The fig-
ure shows the exact result~16! together with
appropriately scaled finite system results ob-
tained using ~8!. The results are for
N5250 (L), N5500 (3), N51000 (h), N
52000 (1), andN54000 (n).
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tems. It is clear that the finite size data appproach the ana-
lytical results, thus lending support to the scaling assump-
tions we made.

To obtain the power spectrum we only have to Fourier
transform~16!. Unfortunately, we were not able to obtain an
analytical expression for this transform. The result of a nu-
merical transform usingMATHEMATICA © is shown in Fig. 2.
We showĜN(v)/N

2 versusvN, which are the natural scal-
ing variables according to~4!. The straight line shown has a
slope21. These results then show that over many orders of
magnitude

ĜN~v!;
N

v
~17!

so that indeed there is 1/f noise in the model.
It is interesting to remark here that the random neighbor

versions of both the BTW-sandpile model@19# and the BS
model @13# can be related to the critical branching process
@20#. Within this approximation both models are thus in the
same universality class. Since it is known that in a mean-
field theory the sandpile model shows 1/f noise@6# it is not
so surprising to find the same results for the BS model. Fi-
nally, we mention that the autocorrelation function of the
activity introduced in@12# has a white noise power spectrum
in the mean-field limit.

We now turn to a discussion of the one-dimensional one
neighbor version of the BS model. Due to long range corre-
lations which are present between subsequent species that

FIG. 3. Numerical results for the correlation
function of the one-dimensional one neighbor
Bak-Sneppen model. The different curves repre-
sent results for ~bottom to top!
N5128,256,1024, and 4096, respectively. The
upper two curves almost completely coincide.

FIG. 2. Numerical Fourier transform~open
circles! of the exact correlation function~16!. The
straight line represents a best fit through the lin-
ear part of the data and has a slope of21.
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have lowest fitness@10# a master equation approach is no
longer possible. So far, the only approach known for these
lattice versions of the BS model is numerical. We have there-
fore performed extensive numerical calculations of the
model on one-dimensional lattices withN up to 8192 and for
time t up to 232. Using these data the values ofxc andt for
the one-dimensional one neighbor model mentioned above
were obtained. Figure 3 shows numerical results for the cor-
relation functionGN(t) for various system sizes. Surpris-
ingly, for large system sizes the correlation function seems to
become independent ofN, implying thatz becomes 0. We
do not fully understand this result, but it may be connected
with similar behavior found for another exponent (h) in
@16#.

Figure 4 shows the power spectrum of the correlation
function for the system withN58192. As can be seen, the
behavior is of the formv2b over many orders of magnitude.
We estimateb50.9760.05. Thus, contrary to the sandpile

model, the BS model has 1/f behavior also in a lattice ver-
sion of the model. The exponentb is furthermore remark-
ably close to its mean-field value. In@12#, an exponent
b50.57 was found for the power spectrum of the activitity
correlation function used in that reference.

In conclusion then, we have calculated the autocorrelation
function of the number of species below threshold in the
Bak-Sneppen model. For a random neighbor version of the
model analytical results could be obtained, while ind51 we
obtained only numerical results. In both cases it was found
numerically that the power spectrum shows 1/f behavior.

We are currently investigating the correlation function in
random neighbor versions of other models of SOC, in the
hope of obtaining analytical results, and investigating the
presence of 1/f noise also in those models.
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