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1/ noise in the Bak-Sneppen model
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We calculate time correlation functions in the Bak-Sneppen mffeleys. Rev. Lett71, 4083(1993], a
model showing self-organized criticality. For a random neighbor version of the model, analytical results are
presented, while on a one-dimensional lattice we give numerical results. The power spectrum of these corre-
lation functions shows f/behavior in both case§S1063-651X96)08205-G

PACS numbes): 5.40+], 64.60.Ak, 87.10+e

A large diversity of physical systems showf Hoise[1].  study[9] it was shown that this model showsf Iioise with
The power spectra of time correlation functions of such sysan exponen{3 which also depends on the degree of non-
tems show power law behavidr # over many orders of conservation in the model. In a sense then, the OFC model
magnitude with an exponeyt in the range 0.6—1.6. A pos- fulfills, more than the sandpile model, the original require-
sible explanation for the wide occurrence of this phenom-ments of the concept of SOC.
enon was put forward in a paper entitled “Self-organized In the present paper we study the question éfridise in
criticality: An explanation of 1ff noise” [2]. In that paper, the Bak-Sneppen modéBS) [10]. This model was intro-
Bak, Tang, and Wiesenfe[@] argue that many open nonlin- duced to describe the coevolution of species in the earth’s
ear dynamical systems with a large number of degrees aécology. Indeed the model shows many qualitative similari-
freedom evolve to a state where they show critical behavioties with data from the real world, but fails on a quantitative
characterized by power law correlations both in space antével (see, e.g.[11]). In this paper we are only interested in
time. Bak, Tang, and Wiesenfe{BTW) illustrate their ideas the BS model as an interesting physical model and do not
using a simple model, the so-called sandpile modgl  discuss its possible biological relevance. The occurrence of
While this model shows many interesting properties, detailed/f noise in the Bak-Sneppen model was already investigated
investigations[4,5] showed that its power spectrum has numerically in[12]. Here we will introduce a somewhat dif-
f~2 behavior in any finite dimension. A mean-field calcula- ferent time correlation function, which has the advantage that
tion of the model did, however, show the expectefl i¢- it can be calculated exactly, at least in a mean-field theory.

havior exactly[6]. In the BS model one has a systemMfinteracting spe-
Following the work of BTW a great variety of models cies, each of which is represented by a real variable
(deterministic and stochastic, conservative and dissipatives[0,1] (i: 1, ... N) which is a measure of the fitness of the

etc) have been introduced which show the phenomenon o$pecies. Initially, alk; are given a random value, taken from
self-organized criticalitf SOQ. A common feature of these @ uniform distribution orf0,1]. The dynamics of the model
models is the presence of a separation of time scales; tHg defined as follows. First one looks for the sitehere the
system is driven at a very slow rate until one of its elementditness takes its lowest value. One then assigns a new random
reaches a threshold. This triggers a burst of actiitya-  variable (taken again from the uniform distributiprx; to
lanche which occurs on a very short time scale. When thespecieg. At the same time, the fitness Kf other species is
avalanche is over, the system evolves again according to tighanged randomly. Several versions of the BS model can be
slow drive until a next avalanche is triggered, and so on. Thélefined, depending on the way in which these other species
activity of the system in this way consists of a series ofare chosen. In the lattice version of the model, the species are
independent avalanches. A generic signature of SOC is thafranged on a lattice and tfie species are taken as nearest
presence of a power law in the si@ duration distribution ~ neighbors. A random neighbor version, in which tke

of the avalanches. If one increases the external driving ratgeighbors are chosen at random at each time step, was intro-
of the system this power law disappears. It was, howeverguced in[13]. This version of the model has the advantage
shown by Hwa and Kard4i] that if one increases the rate at that several of its properties can be calculated exdduy.
which sand is dropped in the sandpile model, and one thuk this paper we will study both this random neighbor ver-
obtains the possibility of interacting avalanches, there apsion (with K=1) and a one-dimensional version of the
pears a region in the power spectrum where the behavior igodel in which we only modify the fitness of the neighbor to
1/f. the right of the species with lowest fitness.

The BTW-sandpile model is a stochastic and conservative Analytical calculations and extensive simulations have
model. Olami, Feder, and Christens@FC) [8] introduced shown that the BS model evolves to a state in which the
a deterministic and dissipative model, related to spring-blockprobability distributionp(x) that a species has a fitness
models of earthquakes, which shows signatures of SOCecomes a step function, which is zero foless than some
such as the occurrence of power law distributions for thehreshold valuex.<1, and which is 1/(*x.) for x>x.. In
sizes of the avalanches, with an exponent which depends dhe random neighbor model it is known that=1/(K+1)
the degree of nonconservation in the model. In a subsequenkactly. The exact value of. is not known for any lattice
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version of the model, but precise numerical estimates existyhere the average is taken over timgin the equilibrium
especially ind=1, for the case in which both neighbors are state. The quantitp(t) has the advantage that its time evo-
updated 15,16. For the case of the one-dimensional modellution can be rather easily studied in the random neighbor
in which one neighbor is updated, we know of no estimateversion of the BS model, as we discuss below. A rather simi-
for x. in the literature. From our numerical results, we esti-lar quantity was also introduced in Flyvbjerg’s “pinball”
matex.= 0.710+ 0.005 for this casédetails of our numerical approximation to the sandpile moddl7]. If one compares
work are described below with an equilibrium model, such as the Ising model, at criti-

Once the system has reached the equilibrium state, itsality, our approach is like studying the autocorrelation func-
dynamics is characterized by perioddentified with ava- tion of the magnetization whereas the activity studieflli|
lanche$ in which at least one of the species has a fitness lessorresponds to measuring the probability that a spin that is
than x., separated by periods in which all species have dlipped at timet=0 will be flipped again at time.
fitness above threshold. The avalanches can be characterizedAccording to the dynamical scaling hypothe§is] one
either by their duration or by their total activity. Let us de- expects the Fourier transfor@y(w) of a correlation func-
note byn(t) the number of species which are below thresh-tion such aq3) to scale as
old as a function ofdiscrete time t. The total activitys of
an avalanche lasting from=t_ to t=t, (so its total dura- Gn(@) =0 "H(wN?), (4)
tionis T=t, —t_+1) is then given by

whereH is a scaling function and the dynamical exponent.

Or equivalently, in real space
s=t; n(t). D)
- Gn(t)=NZo"DH(t/N?). (5)
The distributionsP(T) of avalanche durations arfé(s) of . )
avalanche sizes follow a power law We have calculate@(t) analytically for the random neigh-
bor version K=1) of the BS model and numerically for the
P(T)~T™7, P(s)~s7V. 2) one-dimensional one neighbor version of the model. In both

cases we find the presence of hbise. We now turn to the
For the random neighbor model, it is known exactly thatdetails of these calculations, and we start with the analytical
7=23/2[14] while for the one-dimensional modglvo neigh-  results.
bor updating the most accurate numerical estimate is In [14] a master equation approach to the random neigh-
7=1.073+0.003 [15]. Our simulations of the one- bor model was introduced. L&,(t) be the probability that
dimensional one neighbor model lead to the estimatét timet, n species have a fitness which is below a certain
7=1.08+0.01, giving strong evidence that, as could be ex-valueX. In the end we will be most interested in the case
pected, both one-dimensional models are in the same univewhen\ =x. but for the moment we look at the more general
sality class. We do not know of any existing estimates of thecase. It is then rather easy to write down a master equation
exponenty for the BS model. for P, (1),

It is of importance to remark that in the BS model as

described so far there is no explicit time separation between
a fast time scale for avalanches and a slow time scale for Pn(t+ 1)=m§_:o M pmPm(t), (6)
interavalanche periods. Such a separation is, howewer, -
plicitly present in the definition of the model since one as-

. ; . where the matrix elementM,,, can be written down in
sumes that one time step in the model is related to a step in .
o e =~ . erms ofhA andN [14]. Fort—x,P,(t) evolves to an equi-
geological” time ty=expKmin/T) (Wherexy,, is the lowest

val tx at ven time and | m re of mutation librium distribution P} . The correlation functioiGy(t) can
alue ofx at a give €a S @ measure of mu a.o also be written down in terms of the matfi&. One has
rate, see, e.gl11]). When 17> 1, avalanches occur on time

N

scales which are short compared to the time scale of the N N
external drive which is set by the mutation rate. In this paper Gy(t)= lim E z MKPo(to) [MP(to) ]
we will not further discuss the properties of the BS model on tg—eM=0 k=0

this geological time scale, since for that case no analytical
results can be obtained and we want to concentrate on the
properties of the BS model as a model in physics. If one
wants to make a comparison with real world data, as is done,
e.g., in[11], use of the time scalt is necessary. This expression in fact allows @umerically exact calcula-

In order to study spectral properties of the BS model it iStion of G(1) in finite systems by simple iteration of the

necessary 1o introduce a dynamip_al correlat?on fu.nCti.Or}naster equatiori6). We have performed such calculations
Gn(1). In [12] one uses the probability that a site which IS £or A =x. for systems withN up to 4000 and times up to
active(i.e., has the lowest value &) at time 0 will be active oN (resJIts are discussed belpw

again at time. In our calculations we use the autocorrelation More interesting is the scaling limit in whicN— o and

of the total number of sites below threshold, N—X.. In that limit it is possible to get a closed expression

for the dynamic correlation function. It is therefore conve-

N
lim >, mPy(to)

to—mom:O

2

- )




53 1/ NOISE IN THE BAK-SNEPPEN MODEL 4725

0.1

In G &N

FIG. 1. The exact correlation function of the
random neighbor Bak-Sneppen model. The fig-
ure shows the exact resull6) together with
appropriately scaled finite system results ob-
tained using (8). The results are for
N=250 (¢ ), N=500 (X), N=1000 J), N
=2000 (+), andN=4000 (A).
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ag(x,y,7)=h(x,y,7)+h(x,—y,7), 14
ENOEDIDY mkpranmR(t)—[ > mP*m} . ®
m=0 k=0 m=0 where
whereQ,(t) is the probability that irt time steps the num- 2 1 1/2
ber of species with fithess belawchanges fronm to k. The h(x,y,7)= \/: m> exp(2y?)
authors of{14] assume that in the scaling linft; becomes & T
a scaling functiorf of the variablen/ N, 2 )
X XX T T exg— 20 Y
n
Pr=—1f| —]|. 9)
" WNIUN +x2—2xyexp(—r)]]. (15)

Inserting (9) into (6) and takingt—o, N—o, and X — X, i . i
then gives a differential equation from whidhcan be cal- | NS result has to be used, together with), in the first term

culated[see Eq(21) of [14] ]. Using this result we immedi- ©N the right-hand side ofg). Taking the scaling limit and

ately get the second term on the right-hand sidé8bf using the expression d?y, from [14] we can rewrite this
term as
N 2 N
mP: | =—. 10 2021 (= o
(mEO ”“) 2 o V212 | “ax] “ayxyer-2y71000.7 |
Jr | Jo 0

What remains is a calculation €J,,(t) in the scaling limit.

We therefore assume that this probability scales as Inserting our result fog(x,y,7) and performing the integra-
tion then finally gives

1 m k t
- ql — — 1
emit= R g( NN N)' D GN<t>=N[ o[1-exp—20)PAF (2,327 ()
If we insert this assumption i(6) and take the scaling limit, +F(1,2,3/2r . (7)—F(1,2,5/2r _(7))/3

we obtain a differential equation forg (with

_ _ _ . 1
XK VNy=m/{N, andr=t/N); F25027 (73] 5 (16)
a9 9g 1 4d°g
97 =9+X5 + v (12 whereF(a,b,c,z) is the hypergeometric function and where
which has to solved with the initial condition ro(7)=3[1xexp—7].
g(x,y,7=0)=8(x—Y) (13 We thus see that the correlation function has indeed the scal-
ing form (5) with z=1 ando=2. In Fig. 1 we show our
and reflecting boundary conditions ¥ 0. result(16) for Gy(t)/N versusr, together with the numerical

The solution is results obtained from direct computation (@) in finite sys-
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circles of the exact correlation functiofl16). The
straight line represents a best fit through the lin-
5 : ear part of the data and has a slope—df.
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tems. It is clear that the finite size data appproach the anao that indeed there isflhoise in the model.
lytical results, thus lending support to the scaling assump- It is interesting to remark here that the random neighbor
tions we made. versions of both the BTW-sandpile moddl9] and the BS
To obtain the power spectrum we only have to Fouriermodel[13] can be related to the critical branching process
transform(16). Unfortunately, we were not able to obtain an [20]. Within this approximation both models are thus in the
analytical expression for this transform. The result of a nusame universality class. Since it is known that in a mean-
merical transform usingIATHEMATICA © is shown in Fig. 2.  field theory the sandpile model shows Hoise[6] it is not
We showé,\,(w)/N2 versuswN, which are the natural scal- So surprising to find the same results for the BS model. Fi-
ing variables according t64). The straight line shown has a nally, we mention that the autocorrelation function of the
slope— 1. These results then show that over many orders o#ctivity introduced ir{12] has a white noise power spectrum
magnitude in the mean-field limit.
We now turn to a discussion of the one-dimensional one
& ()~ E (17) neighbor version of the BS model. Due to long range corre-
N ) lations which are present between subsequent species that

G\

FIG. 3. Numerical results for the correlation
function of the one-dimensional one neighbor
Bak-Sneppen model. The different curves repre-
sent results  for (bottom to top
N=128,256,1024, and 4096, respectively. The
upper two curves almost completely coincide.
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FIG. 4. Fourier transfornfcrosses of the nu-
merically calculated correlation function of the
one-dimensional one neighbor Bak-Sneppen
model. The results are for a system N 8192

0 7] species. The straight line represents a best fit
through the linear part of the data and has a slope
of —0.972.
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have lowest fitnes$10] a master equation approach is no model, the BS model has flbehavior also in a lattice ver-
longer possible. So far, the only approach known for thesesion of the model. The exponegt is furthermore remark-
lattice versions of the BS model is numerical. We have thereably close to its mean-field value. If12], an exponent
fore performed extensive numerical calculations of theB=0.57 was found for the power spectrum of the activitity
model on one-dimensional lattices withup to 8192 and for ~ correlation function used in that reference.

timet up to 22 Using these data the valuesxfand r for In conclusion then, we have calculated the autocorrelation
the one-dimensional one neighbor model mentioned abovinction of the number of species below threshold in the
were obtained. Figure 3 shows numerical results for the corBak-Sneppen model. For a random neighbor version of the
relation functionGy(t) for various system sizes. Surpris- model analytical results could be obtained, whilelin1 we

ingly, for large system sizes the correlation function seems t§Pt@inéd only numerical results. In both cases it was found

become independent of, implying thatz becomes 0. We numerically that the power spectrum show$ héhavior.

do not fully understand this result, but it may be connectedr anvgsn?rﬁe?uﬁrbeonrﬂ\y,é?;gﬁgg;flg?hg]rerﬁgg;lstgnsfggt'?nn tlr?e
with similar behavior found for another exponeng)(in 9 :

[16] hope of obtaining analytical results, and investigating the

Figure 4 shows the power spectrum of the correlatiorP €€Nnce of ¥/noise also in those models.
function for the system wittN=8192. As can be seen, the = We thank the Program on Inter-University Attraction
behavior is of the formw ~# over many orders of magnitude. Poles, Prime Minister's Office, Belgian Government for fi-
We estimate8=0.97+0.05. Thus, contrary to the sandpile nancial support.
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